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Dislocation loops in overheated free-standing smectic films

A. N. Shalaginov and D. E. Sullivan
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Static and dynamic phenomena in overheated free-standing smectic-A films are studied theoretically. The
work is based on a generalization, introduced recently by the authors, of de Gennes’ theory for a confined
presmectic liquid. In this approach, smectic ordering in an overheated film is caused by an intrinsic surface
contribution to the film free energy and vanishes at some temperature depending on the number of layers. Here
the theory is further generalized to study the dynamics of films with planar inhomogeneities. A static applica-
tion is to determine the profile of the film meniscus and the meniscus contact angle, the results being compared
with those of a recent study employing de Gennes’ original theory. The dynamical generalization of the theory
is based on a time-dependent Ginzburg-Landau approach. This is used to compare two modes for layer-
thinning transitions in overheated free-standing films, namely, ‘‘uniform thinning’’ versus nucleation of dislo-
cation loops. It is concluded that the nucleation mechanism dominates provided there is a sufficiently large
pressure difference arising from meniscus curvature. Properties such as the line tension and velocity of a
moving dislocation line are evaluated self-consistently by the theory.

DOI: 10.1103/PhysRevE.65.031715 PACS number~s!: 61.30.Jf, 64.60.Ht, 64.70.Md
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I. INTRODUCTION

Free-standing films of several smectic-A liquid-crystalline
compounds can be heated above the bulk smectic disorde
temperature without immediately rupturing, and instead
found to undergo successive layer-by-layer thinning tran
tions as the temperature is increased@1–6#. The persistence
of smectic layering in an overheated thin film is usually
tributed to enhanced ordering associated with the free
faces of the film, as is known to occur in other contexts@7#.
There is not yet, however, a clear consensus on the me
nisms by which layer thinning occurs. According to one
of theories@8–11#, thinning takes place when the smec
layer structure throughout the middle of a film vanishes.
an alternative theory@12#, supported by experimental studie
@13#, layer thinning occurs by spontaneous nucleation of d
location loops prior to the melting of the layer structure
the film interior.

One of the key experimental observables is the varia
of layer-thinning transition temperaturesTc(N) with the
number of film layersN, which is found to be well fit by the
power-law relationN}t2n, where t5(Tc(N)2T0)/T0 , n
'0.7060.10, andT0 is close to the bulk transition tempera
ture. Alternative mathematical relations@10,12,14# and an
upper bound@11# for Tc(N) have been derived from the dif
ferent theories. With appropriate fitting parameters, these
ternative relations all turn out to agree well with the pow
law expression and, thus, are not able to distinguish betw
the various mechanisms.

In this paper, we examine further the connections betw
the different proposed mechanisms of layer-thinning tran
tions. As in several recent works@10,12,14#, our analysis is
based on de Gennes’@15# phenomenological Landau theor
for a ‘‘presmectic’’ film of a fluid exhibiting asecond-order
bulk smectic-A to nematic (N) transition. More precisely
we employ a generalization of that theory recently propo
by the present authors@11#. One drawback of de Genne
original model stems from attributing surface-enhanc
1063-651X/2002/65~3!/031715~10!/$20.00 65 0317
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smectic ordering to an external-field-like coupling term
constant magnitude, which is more appropriate for a fi
confined between solid walls. This has the consequence
a weak degree of smectic ordering in a thin film is predic
to persist up to arbitrarily high temperatures. In order to
duce layer thinning, recent studies based on this theory h
included the effects of a pressure differenceDP associated
with curvature of the meniscus at the film border@10,14#.
According to the latter studies,DP must be of a sufficient
magnitude to cause layer thinning, although the lay
thinning transition temperatures are predicted to depend o
logarithmically onDP. The modified version of de Genne
theory proposed by the present authors@11# utilizes a differ-
ent form of the surface contribution to the free energy~sug-
gested by older theories of wetting@16#!, which is quadratic
rather than linear in the surface order parameter and wh
restores smectic melting at high temperatures without req
ing the pressure term.

According to the theory of Ref.@11#, reviewed here in
Sec. II, the free energy per unit area of an overheated sme
film exhibits a discrete sequence of metastable local mini
whose depths decrease with increasing number of layer
to some finite maximumNcr depending on temperature. A
or slightly below the temperature for which the free-ener
well at Ncr vanishes, it was assumed in Ref.@11# that the film
would spontaneously thin down to a smaller thickness. T
assumption makes no statement on ‘‘how’’ layer thinni
occurs, which is the question addressed in this paper.
proceed by generalizing the theory to allow for inhomoge
ities in the film thickness~Sec. III! as well as the dynamica
evolution of the film, using a time-dependent Ginzbur
Landau approach~Sec. IV!. In the static limit, the theory
provides a description of the contact angle between the
and meniscus, which we compare with the recent experim
tal and theoretical studies of Picanoet al. @14#. Using the
dynamical theory, we investigate the nucleation of dislo
tion loops between film domains of different thicknesses a
the subsequent growth of the thinner region of the fil
©2002 The American Physical Society15-1
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A. H. SHALAGINOV AND D. E. SULLIVAN PHYSICAL REVIEW E 65 031715
which is contrasted with the ‘‘uniform-thinning’’ mechanism
for the film to achieve a state of lower free energy. T
results are mapped onto the conventional nucleation pict
in which the activation free-energy barrier to nucleation d
pends on both the difference in well depths of the homo
neous film regions and the line tensionE of the dislocation
loop. Here we calculate the line tensionE, activation energy,
and velocity of a growing loop self-consistently in the d
namical model, and evaluate their dependence on temp
ture and number of layers. It is found that thinning via nuc
ation of dislocation loops preempts the uniform-thinni
mechanism provided the pressure differenceDP, due to the
meniscus, is sufficiently large. Further discussion of our fi
ings, their relation to those of previous studies, and the
that they are restricted to smectic systems with continuou
opposed to first-order bulk transitions, are discussed
Sec. V.

II. THEORY OF UNIFORM FILMS

In this section, we review the generalized de Gen
theory in the case of a uniform planar free-standing sme
film: further details can be found in Ref.@11#. The film is
modeled by a thin liquid slab bounded by two parallel s
faces located atz56L/2, whereL is the film thickness. The
degree of smectic order in the film is represented by
complex order parameterC(z), where the real part o
C(z)exp(iq0z) describes spatial modulation of the densi
Here q052p/d, with d being the unstressed smectic lay
spacing. The order parameter is parametrized as

C~z!5c~z!exp@2 if~z!#, ~1!

wherec(z) is the amplitude andf(z)[q0u(z) is a phase
proportional to the layer displacementu(z).

The Landau free energy per unit area of the film@17# is
taken to be

f 5
1

2E2L/2

L/2

dzF rc21
1

2
gc41C~“zc!21Cc2~“zf!2G

1
1

2
r s@c2~L/2!1c2~2L/2!#2hs@c~L/2!1c~2L/2!#,

~2!

whereC is an elastic constant andhs ,r s are coupling con-
stants associated with surface interactions. The bulk f
energy density (rc21gc4/2)/2 in Eq. ~2!, with g.0, is
strictly applicable only to a system exhibiting a second-or
smectic-nematic transition. We expressr 5a(T2T* ), where
T* denotes the bulk mean-field transition temperature. Eu
Lagrange equations determiningc(z) andf(z) are obtained
by functional minimization of Eq.~2! @11#. In addition, it is
assumed that the film contains an integral number of lay
N, which fixes @15# the surface value of the phasef(L/2)
5p(L/d2N).

Following the original work of de Gennes@15#, several
previous studies of surface-enhanced ordering of fr
standing smectic films using this theory have attributed s
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ordering solely to the surface fieldhs , with r s50 @10,12,14#.
These studies have also set the parameterg50, thereby re-
stricting consideration to the overheated regimeT.T* . Un-
der the conditiong50, an analytic solution of the theory i
easily obtained@15#. It is found that the smectic amplitud
c(z) decays exponentially with distance from the surfaces
z56L/2 and tends toward a small value in the middle of t
film. The phasef(z) is nonzero when the film thicknessL
differs from an integral multiple ofd, and exhibits its larges
gradientu“zfu in the middle of the film. One drawback o
this model, a consequence of neglecting the quartic termgc4

in Eq. ~2!, is that the resulting equilibrium free energyf (L)
and the order parameterc(z) throughout the film diverge on
approaching the bulk transition temperatureT* , as is shown
by the expressions for these quantities given in previ
work @10,12,14,15#.

In Ref. @11#, smectic ordering in an overheated film
attributed to a nonzero valuer s,0, with hs50. In the fol-
lowing, we refer to this as ther s model. In this case, the
Euler-Lagrange equations following from Eq.~2! always ad-
mit a trivial solutionc(z)50, representing a nematic state
the film, which is the only solution existing at sufficientl
high temperature. The numerical solution of those equati
is described in Ref.@11# for the general caseg5” 0. The varia-
tion of the equilibrium free energyf (L) typical for this
model is depicted in Fig. 1. The free energy exhibits a se
wells with centers situated approximately atL5Nd and
depths diminishing withN, while f (L) vanishes over wide
ranges ofL between the wells. In the latter ranges ofL,
wheref (L)50, the order parameterc(z) is identically zero.
Although not discernable in the figure, the slope of the fr
energy smoothly approaches zero at the limits wheref (L)
→0. In the temperature rangeT,Ts , where Ts5T*
1r s

2/(Ca), f (Nd) for all N is smaller than some negativ
threshold depending onT. On the other hand, for tempera
tures T.Ts , wells with nonzero depths occur only forN
<Ncr , whereNcr is finite and depends onT. This in the case
in Fig. 1, whereNcr511. It was argued in Ref.@11# that the

FIG. 1. Dimensionless free energy per unit areaf d/C vs thick-
ness L/d calculated using scaled parametershs50, r sd/C5
20.2, gd2/C50.01, andrd2/C50.05.
5-2
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DISLOCATION LOOPS IN OVERHEATED FREE- . . . PHYSICAL REVIEW E 65 031715
temperature at which the free-energy well forL5Ncrd dis-
appears, which we will call the ‘‘maximum temperature’’ fo
an Ncr-layer film, is an upper limit for the layer-thinning
transition temperatureTc(Ncr). Films of all N,Ncr can still
exist as metastable states and, in principle, thinning co
then occur to any one of these states. In contrast, we note
the original version of de Gennes’ presmectic mo
@10,12,14,15#, with r s50, predicts that a weakly ordere
smectic state of the film exists and is more stable than
disordered state at all temperaturesT.T* .

The following scaling of ther s model free energy is use
in Fig. 1 and in subsequent analyses. On expressing dista
in units of the layer spacingd, the free energy in Eq.~2! can
be expressed asf (L,r ,g,r s ,C)5(C/d) f̂ (L/d, r̂ ,ĝ, r̂ s), where
r̂ 5rd2/C, ĝ5gd2/C, and r̂ s5r sd/C. While an additional
scaling transformation of the order parameterc could be
applied to factor out the parameterĝ from f̂ , we have found
it convenient for numerical analysis to set this at the~arbi-
trary! value ĝ50.01 and leave the scaling off in the form
indicated.

III. NONUNIFORM FILMS: STATICS

In order to study the growth of dislocation loops and a
sociated phenomena in free-standing films, the theory of S
II should be generalized to account for inhomogeneities
the film thicknessL. Here we treat this problem by a Landa
approach of expanding the film free energy in powers
gradients ofL, yielding an ‘‘effective interface’’ theory@19#.
We will assume that the film is symmetrical about its m
plane atz50, so that its top and bottom surfaces do not va
independently. To lowest order in gradients ofL, the total
film free energy is then given by

F5E d2r'F f̃ ~L !1
1

2
D~“'L !2G , ~3!

where the horizontal or in-plane direction is denotedr' ,
having Cartesian components (x,y), “'5(“x ,“y), and L
5L(r') is the spatially varying film thickness. The functio
f̃ (L) is the equilibrium free energy per unit area of a film
uniform thicknessL: as discussed shortly, this may diffe
slightly from the equilibrium free energyf (L) obtained from
Eq. ~2!.

One contribution to the coefficientD in Eq. ~3! is given
by g/2, resulting from the liquid-air interfacial tensiong of
the free surfaces bounding the film. While this surface c
tribution could vary withL due to changes in the degree
smectic ordering, such effects should be small compa
with that due to the liquid-air density difference across
interfaces. On settingD5g/2, the free energy in Eq.~3!
agrees with the small (“'L) limit @20# of that used in Ref.
@14# to analyze the shape of the meniscus at the edge
free-standing film. In addition, contributions toD arising
from horizontal gradients of the order parameterC and nem-
atic directorn̂ in the film interior may be present. In prin
ciple, the latter contributions could be determined by gen
alizing the free energy of Eq.~2! to include such gradien
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terms, consistent with de Gennes’ more general theory of
N-A transition@23#, and expanding the solutions of the co
responding Euler-Lagrange equations forC andn̂ in powers
of the gradients ofL. These elastic effects, however, are al
expected to be small compared with those fromg in the case
of an overheated film due to the weak degree of sme
ordering in the middle of a film. This is also consistent wi
arguments given in Ref.@10#. ~We note that the model free
energy considered in Ref.@14#, following earlier work in
Ref. @21#, included an additional term attributed to the e
ergy of edge dislocations, but this contribution was found
vanish under integration and plays no role in film stat
@22#.! Finally, higher-order gradient terms ~i.e.,
(“'L)4, (“'

2 L)2, etc.! should also occur in the free en
ergy F, but these will be omitted here on assuming that
gradient and curvature ofL are small@20#.

The functionf̃ (L) may differ from f (L) of Eq. ~2! due to
the existence of a positive pressure differenceDP5Pair
2Pliquid across the surface of the meniscus surrounding
film. Such a pressure difference would produce a shiftDm in
the chemical potential of the film molecules from their val
at coexistence with the vapor phase across a planar inter
@24,25#. This leads to

f̃ ~L !5 f ~L !1DPL. ~4!

The main effect of theDP term is to shift the depths and t
a slight extent the positions of the smectic minima of t
effective free energyf̃ (L) with respect to those off (L),
possibly eliminating minima occurring at largeL @10#.

Here we will use the static free energy@Eq. ~3!# with f̃ (L)
given by Eq. ~4!, to analyze the mensiscus shape. T
closely follows the analysis of Ref.@14#, although the latter
work was based on de Gennes’ original model forf (L),
while here we will employ ther s model with g5” 0. The
profile of the meniscus is found by minimizing Eq.~3! with
respect toL, subject to the boundary condition that the bu
of the film has a thicknessL[H'Nd. Assuming thatL var-
ies only in thex direction andD is independent ofL, the
resulting Euler-Lagrange equation is

D
d2L

dx2
2

] f̃

]L
50. ~5!

The first integral of this equation, with the boundary con
tion L(2`)5H, is

D

2 S dL

dxD 2

5 f̃ ~L !2 f̃ ~H !, ~6!

which has the implicit solution

x5AD

2 EL(0)

L(x)

dL8@ f̃ ~L8!2 f̃ ~H !#21/2. ~7!

Here both the originx50 and the corresponding valu
L(0).H are arbitrary. Related considerations have been
plied to describe the shape of liquid droplets on a solid s
5-3
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A. H. SHALAGINOV AND D. E. SULLIVAN PHYSICAL REVIEW E 65 031715
strate@26,27#. However, the description based on the abo
equations is only valid for smallu“'Lu; deep in the menis-
cus, higher-order terms in“'L @20# may be needed for an
accurate treatment.

Figure 2 shows the solutions to Eq.~7! for the r s model
using the same parameters as in Fig. 1. Two cases are sh
the solid line corresponding toDP50 while the dotted line
corresponds toDP50.05C/d2. The reduced unit forDP is
consistent with that forf discussed at the end of Sec.
Following from that scaling and Eq.~7!, the horizontal dis-
tance x is expressed in units ofRsc[dADd/C.! In both
cases, the meniscus profile is seen to be fairly smooth, ra
than exhibiting the clear separation of distinct steps of he
'd expected@21,25# at low temperatures when the smect
A phase is stable in bulk. The smoothness of the mensi
profiles in Fig. 2 is a consequence of being in the overhea
regime.

For T,Ts , the function f (L) tends to a nonzero valu
f (`) with increasingL. The latter represents the contributio
of surface-induced smectic ordering to twice the interfac
tensiong of the liquid-vapor interface of a semi-infinite liq
uid. Neglecting small oscillations off (L) about f (`) and
defining the meniscus slope angle 2u'dL/dx, Eqs.~6! and
~4! lead to

u25
1

2D
@ f ~`!2 f ~H !1DP~L2H !#. ~8!

On assuming thatD5g/2 and extrapolating the function i
Eq. ~8! down to L5H, we obtain for the contact angleum
between the meniscus and film,

um
2 5

1

g
@ f ~`!2 f ~H !#, ~9!

independent ofDP. This result agrees with that derived
Ref. @14#; we note that essentially equivalent relations we

FIG. 2. Thickness of the meniscus vs scaled in-plane dista
x/Rsc , using thef (L) function of Fig. 1. The solid line correspond
to DP50 while the dotted line corresponds toDP50.05C/d2. The
origin x50 is such that, for both curves,L(x50)56.000 01.
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derived some time ago in the case of soap films@24,28#. Note
also that Eq.~8! predicts growth ofu with increasingL for
DP.0. The meniscus curvaturek is found to be

k[
du

dx
5

du

dL

dL

dx
5

du2

dL
5

DP

g
, ~10!

which is just the Laplace law.
Using the original de Gennes model (g5r s50) free en-

ergy, we find that the contact angle diverges asT approaches
T* from above, whereas the experimental results of Ref.@14#
indicate regular behavior in this region. The calculations
Ref. @14#, based on the same model but fixingc(L/2) instead
of hs , predicted a different anomaly in the contact ang
namely, thatum vanishes asT→T* for all N. The divergence
of the contact angle near the bulk second-order transitio
the original de Gennes model is removed by settingg5” 0.
Here we present results forum using ther s model, although
qualitatively similar results are obtained usingr s50 with
hs5” 0 andg5” 0. Figure 3 showsum

2 , in units ofC/(dg), as

a function of r̂}(T2T* ) for various number of layersN,
using the free energyf (L) depicted in Fig. 1. It is seen tha
um remains nonzero on approaching the bulk transition te
perature and increases with decreasingN, in agreement with
experiment@14#. We also find that the contact angle vanish
above the maximum temperature for a given number of l
ers. This is in contrast with the model of Ref.@14#, which
yields a small but nonzero contact angle for arbitrarily lar
temperature and film thickness. However, as seen in Fig
the maximum inum as a function of temperature is fairl
insensitive to the number of layers, which does not acc
with the experimental results.

Comparison of Fig. 3 with the experimental data@14# for
um

2 indicates that the scaling unitC/(dg) should be of the
order of 1022. TakingD5g/2, we then estimate the in-plan
distance scale unit to beRsc[dADd/C'(10/A2)d'2

ce FIG. 3. Squared meniscus contact angleum
2 in units ofC/gd as

a function of dimensionless temperature variablerd2/C}(T2T* )
for various number of layersN, calculated in ther s model with the
same parameters as in Fig. 1.
5-4
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DISLOCATION LOOPS IN OVERHEATED FREE- . . . PHYSICAL REVIEW E 65 031715
31028 m, where we have used the valued5331029 m
@22#. This estimate will be utilized in calculations describ
in the following section.

IV. DYNAMICS OF NONUNIFORM FILMS

A. Time-dependent Ginzburg-Landau equation

Now we extend the theory of the preceding section
account for the dynamics of thickness variations. We w
focus on dynamical processes with large enough charact
tic times to neglect inertial effects. Although the details
relaxation are undoubtedly quite complicated, here we w
proceed by assuming the simplest possible dissipative
namics forL, based on a time-dependent Ginzburg-Land
~TDGL! equation@29#. This equation is appropriate for de
scribing the dynamics of a nonconserved variable, whicL
can be regarded in the case of a film open to the exchang
molecules with the meniscus. The TDGL equation is

h
]L

]t
52

dF

dL
5FD“'

2 L2
] f̃

]L
G . ~11!

HeredF/dL is the functional derivative of the film free en
ergyF, given by Eq.~3!, providing the thermodynamic forc
that drives the system toward equilibrium,t is time, andh is
a kinetic coefficient that we will assume to be constant. As
the preceding section, we have assumedD to be independen
of L.

Two opposing mechanisms for thinning of an overhea
smectic film are ‘‘uniform thinning’’~i.e., with “'L50 for
all r') and via nucleation of dislocation loops. If the initia
film thicknessL0[L(t50)'Nd is uniform and at a local
minimum of the shifted free energyf̃ , then it will remain so
indefinitely according to Eq.~11!. ~This picture neglects pos
sible disruption due to thermal fluctuations, which we n
glect in this paper.! Under small displacements of the thic
ness from the initial valueL0, the film will be restored to tha
initial thickness. Hence uniform thinning can only occur
the maximum temperature of anN-layer film, and then only
if DP.0 @30#.

To examine the growth of dislocation loops, for simplici
we first consider a one-dimensional solution of Eq.~11!, in
the form of an infinite straight-line kink parallel to they axis
separating domains of thicknessesL1 andL2 and moving in
the x direction, illustrated in Fig. 4,

L5F~x2v`t !, ~12!

where the functionF and kink velocityv` are to be deter-
mined. Substituting Eq.~12! into Eq.~11! yields the ordinary
differential equation

DF91hv`F82
] f̃ ~F!

]F
50, ~13!

with boundary conditions

F~2`!5L1 , ~14a!
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F~`!5L2 , ~14b!

where the prime symbols (8) denote derivatives ofF with
respect to its argument. The thicknessesL1 and L2 are at
local minima of f̃ (L). Usually, we will take these to be ad
jacent minima, with L1'(N21)d, L2'Nd, and f̃ (L1)
, f̃ (L2).

Equation ~13! has a well-known mechanical analog
@31,32#. It can be considered as the dynamical equation
scribing movement of a particle of ‘‘mass’’D in a medium
with ‘‘friction coefficient’’ hv` and subject to a ‘‘potentia
energy’’ 2 f̃ (L). That equation has no stationary solutio
(v`50) unless the depths of the minima off̃ (L) at L1 and
L2 are equal. This follows by considering the first integral
Eq. ~13!, namely,

d

dX F1

2
D~F8!22 f̃ ~F!G52hv`~F8!2, ~15!

whereX[x2v`t is the argument ofF. Integrating Eq.~15!
over X using the boundary conditions Eq.~14! yields

v`5
D

hE
@ f̃ ~L2!2 f̃ ~L1!#, ~16!

where the quantityE is defined as

E[DE
2`

`

dX~F8!25DE
L1

L2
dFF8. ~17!

Equation ~16! shows thatv` is proportional to the free-
energy differencef̃ (L2)2 f̃ (L1) and, hence, vanishes if tha
difference is zero. As discussed in the following sectionE
can be identified with the line tension of the dislocation loo

For any functionf̃ (L) characterized by two unequal ad
jacent minima, as is the case here, there should be a un

FIG. 4. Schematic picture of the film thickness variation for
step separating five-layer and six-layer domains. The horizontal
ordinate is eitherx or r' , corresponding to one-dimensional o
two-dimensional motion of the kink, respectively. The width of t
kink is represented byDR.
5-5
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A. H. SHALAGINOV AND D. E. SULLIVAN PHYSICAL REVIEW E 65 031715
solution of Eq.~13! for the velocityv`.0 and functionF
describing the profile of the kink, which moves toward t
region of thicknessL2 in order to eliminate the domain o
higher free energy. Under conditions where the higher m
mum of f̃ (L) at L2 vanishes and becomes a point of ze
curvature, as happens in the present model at the maxim
temperatures, the velocityv` and kink shape may becom
nonunique. In other contexts@31,33,34#, this is called a state
of marginal stability. Here, we always find~Sec. IV C! that
uniform thinning occurs under these conditions whenDP
.0 @30#.

The solutions of the one-dimensional equation Eq.~13!
turn out to be relevant in the more general two-dimensio
case, as discussed in the following subsection.

B. Nucleation of dislocation loops

If a dislocation loop separatingN- and (N21)-layer re-
gions is nucleated, initially it will be of finite size. Accordin
to the conventional nucleation picture~see, e.g., Refs
@12,21,23# for the case of smectic films!, the loop then will
either expand or collapse depending on whether its in
radius is greater or smaller than some ‘‘critical’’ value. He
we are interested in determining the critical radius, the as
ciated activation free energy, and the subsequent dynam
evolution of the loop.

We assume that the dislocation loop is a circle, as
served in recent experiments@12,13#. Using in-plane polar
coordinates, with origin at the center of the loop and rad
distance denotedr' , Eq. ~11! becomes

h
]L

]t
5FD

1

r'

]

]r'
S r'

]L

]r'
D2

] f̃

]L
G . ~18!

The associated boundary conditions are

S ]L~r'!

]r'
D

r'50

50, ~19a!

L~`!5L2'Nd. ~19b!

The film thickness in the center of the loop atr'50 will
usually be close to the valueL1'(N21)d. The change in
free energy due to formation of the loop is

DF5
1

2E d2r'@2 f̃ ~L !22 f̃ ~L2!1D~“'L !2#

5pE
0

`

dr'r'F2 f̃ ~L !22 f̃ ~L2!1DS ]L

]r'
D 2G . ~20!

In the case of a stationary solution of Eq.~18!, corresponding
to a ‘‘critical’’ nucleus,DF is the activation free energy.

The profile ofL(r') describing a dislocation loop shoul
have a kink structure, as in Fig. 4, with]L/]r''0 every-
where except within a narrow region of widthDR centered
around some valuer'5R. Numerical solution of the station
ary limit of Eq. ~18!, with (]L/]t)50 and the boundary
conditions Eq.~19! is difficult, precisely because this is a
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sociated with a unique ‘‘critical’’ value of the loop radiusR.
We have found it more expedient, and of more general
evance, to solve the full time-dependent partial differen
equation~18!, using a standard subroutine~NAG FORTRAN

D03PCF!. Our results reported below in Sec. IV C have be
obtained from this numerical analysis. However, we ha
found that those results are very well reproduced using
following ansatz forL(r' ,t), having the form of a moving
kink:

L~r' ,t !5F@r'2R~ t !#. ~21!

As discussed some time ago in a general context by C
@35#, this form is not an exact solution of the two
dimensional equation~18! but should be a good approxima
tion if the kink radiusR is much larger than its widthDR. On
substituting Eq.~21! into Eq.~18! and approximating 1/r' by
1/R, we arrive again at theone-dimensionalequation~13!,
but with v` defined as@35#

v`5
dR

dt
1

D

h

1

R
. ~22!

The constantv` is the asymptotic@R(t)→`# velocity of a
loop, and depends~for given D andh) only on the function
f̃ (L) and its chosen pair of minima.

Our numerical analyses of the original two-dimension
equation~18!, starting from initial trial profiles mimicking
the expected kink structure, show that both the kink shapF
in the moving coordinate frame and the right-hand side
Eq. ~22! remain practically constant as the kink moves. Th
while the results to be reported in Sec. IV C are all obtain
from the numerical solution of Eq.~18!, the one-dimensiona
mapping described above usually is an excellent approxi
tion and provides, as discussed next, a useful framework
interpreting the results.

The critical loop radiusRc corresponds to that value ofR
for which dR/dt50. From Eq.~22!, this yields the relation-
ship betweenRc andv` ,

Rc5
D

hv`
. ~23!

Using Eq.~16!, this becomes

Rc5
E

f̃ ~L2!2 f̃ ~L1!
. ~24!

One recognizes that this relation is consistent with stand
arguments of nucleation theory. On approximating the in
grand in Eq.~20! by the constantf̃ (L1)2 f̃ (L2) inside a
circle of radiusR2DR/2, neglecting the integrand forr'

.R1DR/2, and using Eq.~15! within the kink region of
width DR, one finds forDR!R that the free-energy chang
is given by the standard parabolic form@23#

DF52pR2@ f̃ ~L2!2 f̃ ~L1!#12pRE. ~25!
5-6
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The first term in Eq.~25! is the decrease in film free energ
due to the differencef̃ (L2)2 f̃ (L1) @36# while the second
term is the free energy that has to be overcome due to
line tension of the loop. MaximizingDF with respect toR
yields the critical radiusRc given by Eq.~24!. The corre-
sponding activation free energyFact5DF(Rc) is

Fact5
pE2

f̃ ~L2!2 f̃ ~L1!
5pRcE. ~26!

The expression forE given earlier in Eq.~17! agrees with
a familar mean-field relation for the tension of a stationa
interface in terms of its profile shape@37#. Here that relation
also applies to a moving kink of sufficiently large radiu
under the assumption~supported by our numerical studie!
that the profile shape is preserved during its motion.

One final point to note concerns the physical interpre
tion of the equation of motion Eq.~22! for R(t). This equa-
tion is equivalent to the balance of thermodynamic and d
sipative forces per unit length of the dislocation line,

1

2pR S dDF

dR D1h
E

D S dR

dt D50. ~27!

This yields Eq.~22! on using Eqs.~16! and~25!, and agrees
with the model of dislocation-loop dynamics described
Geminardet al. @21#, on identifying the mobilitym used by
these authors with the quantityDd/(hE). Note that ifv` is
known, thenR(t) at an arbitrary time can be found by sol
ing Eq. ~22! @35#, which gives the relation

t2t05
1

v`
E

R0

R

dR8
R8

R82Rc

5
1

v`
S R2R01Rc lnU R2Rc

R02Rc
U D ,

~28!

where R0 is the radius at an arbitrary initial timet0. The
study of dislocation-loop dynamics in Ref.@21#, performed
below the bulkA-N transition temperature, showed that E
~28! very well fits experimental data. Performing our own
of Eq. ~28! to the data reported in Ref.@21# yields the values
v`52.59 mm/s andRc542.6 mm, to be contrasted with
results described below for overheated films.

C. Numerical results

Figure 5 illustrates the dependence of the free energyDF
on radiusR due to a growing dislocation loop in a six-laye
film, for the case off (L) shown in Fig. 1 andDP50. The
in-plane distance is expressed in units ofRsc[dADd/C, as
in Fig. 2, while the free energy is plotted in units ofDd2,
which follows by scaling of Eq.~20!. The crosses are ob
tained by evaluating Eq.~20! while monitoring the numerica
solution of Eq. ~18! for a dynamically stable kink as i
evolves with time, where the loop radiusR is defined such
that L(R)5@L(0)1L(`)#/2. It is seen thatDF(R) is very
well fit by Eq. ~25!: the fitted value off (L2)2 f (L1) agrees
with that obtained directly from the static theory with a pr
cision of 0.5%. We also verified that the right-hand side
Eq. ~22! remains constant within the same precision, givin
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value v`50.18D/(hRsc). This numerical calculation sup
ports the ansatz Eq.~21! for a two-dimensional kink with
constantv` related toR(t) by Eq.~22!. Analogous fittings to
Eqs.~25! and~22! of the numerically determinedDF(R) and
kink radius have been carried out for all our calculation
showing comparable precision except very close to the m
mum temperature of anN-layer film, where uniform thinning
is found to occur. As a further check, we find very clo
agreement between the values of the line tensionE obtained
from the fitting to Eq.~25! and by direct evaluation of Eq
~17! using the numerically determined kink profiles.

Only recently, in Ref.@13#, have the dynamics of disloca
tion loops in overheated films been studied experimenta
albeit for a system exhibiting afirst-order bulk A-isotropic
~I! transition.~This difference will be discussed in Sec. V!
The magnitude of the loop velocity was found to be 103–104

times larger than that reported for the smectic-A phase in
Ref. @21#, which we will comment on further below. We not
that the data in Ref.@13# show a purely linear dependence
R on time, suggesting thatR/Rc@1 in the experimentally
accessible range and that the measured velocity corresp
to v` of the present theory. The data reported in Ref.@13#
also show that the dislocation-loop velocity slightly increas
with increasing number of layers. To check the depende
of v` on thickness in our theory we tookh to be independen
of N. Figure 6 shows the results of calculations using
f (L) function employed in Fig. 1. It is seen that in som
range of thickness the velocity slightly increases withN pro-
vided thatDP.0. We do not rule out thath depends on
thickness and diminishes withN, as suggested in Ref.@13#,
but a detailed analysis ofh is beyond the scope of this pape
Figure 7 shows, in the case of a five-layer film, thatv` is
predicted to increase with temperature, in agreement w
experiment@13#. The rate of increase is enhanced in the pr
ence of a nonzeroDP. The upper temperature limits of th
curves in Fig. 7 are slightly less than the maximum tempe

FIG. 5. Free energyDF ~reduced byDd2) of a dislocation loop
in a 6-layer film vs radiusR/Rsc Crosses: numerical results ob
tained from Eq.~20! and the solution of the dynamical equation E
~18! for the samef (L) and r s-model parameters as in Fig. 1, wit
DP50. Solid line: fit ofDF with the parabolic function in Eq.~25!.

The best fit yieldsE50.54ADCd and f̃ (L2)2 f̃ (L1)50.098C/d.
5-7
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tures for the given values ofN andDP. Beyond these limits,
we find that dislocation-loop growth is superceded by u
form thinning.

Using Eq.~23! and the velocity data in Fig. 6, the critica
radiusRc can be determined. Referring only to the points
N511 in the figure, we find thatRc514.9Rsc and 1.43Rsc
for DP50 and DP50.05C/d2, respectively. These value
bracket the range ofRc values obtained for other values ofN.
Using the estimate forRsc described at the end of Sec. II
we thus findRc to be in the range 1021 to 1022 mm, several
orders of magnitude lesser than the value deduced at the
of the preceding subsection in the bulk smectic-A phase. In
view of Eq. ~23!, these results are consistent with the
ported differences in loop velocityv` below and above the
bulk transition temperature.

The key quantity that determines whether spontane
nucleation of a dislocation loop in an overheated film ac
ally occurs is the activation free energyFact . The depen-

FIG. 6. Velocityv` @reduced byD/(hRsc)# for N-layer films vs
the number of layers, calculated using thef (L) depicted in Fig. 1.
Circles:DP50. Triangles:DP50.05C/d2 ~as in Fig. 2!.

FIG. 7. Reduced velocity for a five-layer film vsrd2/C}(T
2T* ). Parameters of ther s model are the same as in Fig. 1. Low
curve ~solid!: DP50. Upper curve~dashed!: DP50.05C/d2.
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dence of the reducedFact for a single-layer dislocation loop
on the number of layersN in the initial uniform film, is
shown in Fig. 8. Again, the calculations were done using
f (L) function depicted in Fig. 1. Note that the temperature
this case is slightly below the maximum temperature for
11-layer film. To judge whether nucleation occurs, we u
the argument described in Ref.@12#, based on the frequenc
per unit area of forming a dislocation loop of radiusR
.Rc . This frequency is given byf 5 f 0exp(2Fact/kBT),
where f 0 is estimated to be 1026 cm22 s21 @23#. As shown
in Ref. @12#, this gives that the condition for a dislocatio
loop to nucleate in 0.1 s in a 1-cm2 film is Fact /kBT'60. To
compare this number with Fig. 8 requires a value for t
dimensionless parameterDd2/(kBT). Taking D5g/2'1.5
31022 N/m, kBT54.5310221 J, andd5331029 m, we
estimate thatDd2/kBT'30. These numbers yield the crite
rion that Fact /(Dd2) must become about 2 or smaller fo
spontaneous nucleation to occur. Figure 8 shows that, for
chosen set of parameters, this can be achieved provided
DP.0 is sufficiently large.

Figure 9 shows the variation of the line tensionE with
initial number of layersN for the same cases shown in Fig
6 and 8. Except for the last two points in the figu
(N510,11), E is seen to be essentially independent ofDP.
It follows from Eq. ~26! that it is the decreasing magnitud
of E on approachingNcr for a givenT that is mainly respon-
sible for the decrease inFact in Fig. 8 nearNcr and, simi-
larly, for the increase ofv` when DP.0 in Fig. 6. The
difference between the two cases shown in Figs. 6 and 8
DP50 and DP.0, is due to the fact thatf̃ (L2)2 f̃ (L1)
' f (L2)2 f (L1)1DPd is dominated by the termDPd in the
latter case for the value ofDP used.

V. CONCLUSIONS

The present theory, a modification of de Gennes’@15#
theory of presmectic films, is based on the generally

FIG. 8. Activation free energyFact ~reduced byDd2) for
N-layer films vs the number of layers calculated using thef (L)
function shown in Fig. 1. Circles:DP50, triangles: DP
50.05C/d2.
5-8
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cepted view@12# that the occurrence of overheated fr
standing films is due to surface-enhanced smectic ord
@7#. In the case of a uniform planar film, our theory@11#
predicts that there is a maximum temperature for w
smectic ordering in anN-layer film can occur. We associa
this with an upper bound for the true layer-thinning transi
temperatureTc(N). Employing a dynamical generalizati
of the theory based on a TDGL equation, we have shown
thinning via nucleation of dislocation loops, the mechan
indicated by recent experiments@12–14#, is possible pro
vided the pressure differenceDP resulting from curvature o
the surrounding meniscus is sufficiently large. Otherwise
film would undergo either ‘‘uniform thinning’’ or, possibl
rupturing by a process analogous to spinodal dewetting@30#.
The requirement for a nonzeroDP to promote nucleation o
dislocation loops is consistent with other recent stu
@10,14#, although we emphasize here that the conditionDP
Þ0 is not essential forsome type of thinning process
occur.

In the present paper, all nucleation properties~i.e.,
Rc ,Fact ,v` ,E) are interrelated within the framework of s
lutions to the TDGL equation. In particular, the line tens
E of the dislocation loop is expressed in terms of the k
profile, see Eq.~17!. From this equation,E depends sel
consistently on the elastic behavior of the system throug
dependence of the kink shape on the uniform-film free

FIG. 9. Line tensionE ~reduced byADCd) for N-layer films vs
the number of layers, calculated usingf (L) depicted in Fig. 1
Circles:DP50, triangles:DP50.05C/d2.
n

v.
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ergy f̃ (L) and via possible elastic effects contained~see Sec.
III ! in the coefficientD. In contrast, previous related work
@10,12,14,21# have evaluated nucleation properties using
timates for the line tensionE obtained from independen
analyses, rather than being related self-consistently to
kink shape.

It is important to emphasize that the present paper is
stricted to smectic-A liquids undergoing continuousA-N
transitions in bulk. For this reason we do not attempt to ma
quantitative comparisons with the experimental results
Ref. @13# for dislocation-loop dynamics, since the latter pe
tain to a system with a first-orderA-I transition. Such a
system can be treated using the present Landau-de Ge
theory ~albeit with considerably greater complexity! by ap-
propriately modifying the bulk free-energy density in Eq.~2!.
One significant difference that is expected concerns con
butions to the ‘‘DP’’ term in the resulting uniform-film free
energy. In a system with a first-order bulk transition, suc
term arises even in the absence of meniscus effects, du
the grand-canonical@17# free-energy difference between
metastablebulk smectic-A phase and the isotropic phas
@9,18#. This effect was recognized in the nucleation theory
Ref. @12#, although the latter work otherwise employed
Gennes’ theory for a second-order bulk transition. Clearly
compare the present dynamical predictions with experim
it would be of interest to perform measurements on the
namics of layer thinning in systems such as that studied
Ref. @14#, which exhibit second-order bulkA-N transitions.

Our picture is that dislocation-mediated thinning of
overheated free-standing smectic film may preempt
uniform-thinning mechanism and thus, for givenN and fixed
values of the model parameters such asr s , occur at a lower
temperature than predicted@11# by considering a purely uni-
form film. This is conceivable becauseall free-standing film
states are metastable@18#. Here we have presented sever
qualitative results in support of this picture. An addition
step would be to evaluate the shift in layer-thinning tran
tion temperaturesTc(N) from those predicted@11# for a uni-
form film, and attempt a refitting with experimental data,
task left for future study. Further studies will also be direct
to evaluating the kinetic coefficienth and, as already men
tioned, extending the present theory to smectic films w
first-order bulk transitions.
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